Abstract

In order to promote the thermostability of α-diimine nickel complex by ligand backbone structure, a series of α-diimine nickel complexes with substituents on acenaphthequinone backbone were synthesized and used as catalysts for ethylene polymerization. When the hydroxyethyl phenoxyl group was introduced to the acenaphthequinone-backbone, the thermal stability and activity of the catalyst could be significantly improved. The catalytic activity of complex C2 [5-(4-(2-hydroxyethyl)phenoxyl)-N,N-bis(2,6-diisopropyl)acenaphthylene-1,2-diimine]nickel(II) dibromide with isopropyl substituents on N-aryl reached 8.2 × 106 g/(molNi·h) at 70 °C and 2 MPa. The activity of [5-(4-(2-hydroxyethyl)phenoxyl)-N,N-bis(2,6-dibenzhydryl-4-menthylphenyl)acenaphthylene-1,2-diimine]nickel(II) dibromide (C3) still maintained at 6.7 × 105 g/(molNi·h) at 120 °C. Compared with C3 containing bulky dibenzhydryl substituents, the activity of C2 was sensitive to the change of the polymerization pressure. However, the polyethylenes obtained from complex C3 had lower branching density. Meanwhile, the molecular weight could reach 971 kg/mol, which is almost 5 times as much as that of the polyethylene obtained from complex C2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call