Abstract

Thermal stabilization of carrot juice components, mainly β-carotene, has been studied when they are embedded in a silica matrix. The organic components induce structural changes on the inorganic matrix, decreasing the sintering temperature at which stable forms of amorphous silica such as β-tridymite, and crystalline structures like α / β-cristobalite can be obtained, they also induce the formation of stishovite traces at ambient pressure. We made use of the sol-gel method with a water/TEOS molar ratio of 11 to prepare the silica composite. The characterization of the samples was carried out using X-ray diffraction, IR spectroscopy, emission fluorescence, thermogravimetric analysis and scanning electron microscopy. Results indicate high thermostability of the composite as a result of the protective function of the photosystem II carotenoids, which tend to delay the gel-glass transition removing water at higher temperature than other chlorophyll species embedded in a silica matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.