Abstract

Newcastle disease (ND) is a highly contagious viral disease of poultry causing significant economic losses worldwide. Vaccination is considered the most reliable approach to curb the economic menace that is ND, but the thermolabile nature of Newcastle disease virus (NDV) vaccination poses a significant threat to its protective efficacy. This study aimed to profile the thermostability of NDV isolates from duck (As/Km/19/44) and parrot (As/WB/19/91) and evaluate their immunogenic potential in chicks. Fusion protein cleavage site (FPCS) and phylogenetic analysis demonstrated the lentogenic nature of both the isolates/strains and classified them as class II genotype II NDV. The characterized NDV isolates were adapted in specific-pathogen-free (SPF) chicks by serially passaging. Biological pathogenicity assessment of chicken-adapted As/Km/19/44 (PSD44C) and As/WB/19/91 (PSP91C) revealed both the isolates to be avirulent with a mean death time (MDT) of more than 90 h and an intracerebral pathogenicity index (ICPI) ranging from 0.2 to 0.4. Both of the NDV isolates displayed varied thermostability profiles. PSD44C was the most thermostable strain as compared to PSP91C and the commercially available LaSota vaccine strain. The immunogenicity of PSD44C and LaSota was significantly higher than PSP91C. Based on these results, it is concluded that NDV isolate PSD44C is more thermostable and immunogenic when administered intraocularly without any adverse effects. Therefore, PSD44C is suitable for further research and vaccine development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call