Abstract

We isolated from compost an aerobic, thermophilic, Gram-stain-positive, spore-forming bacterium that formed branched vegetative and aerial mycelia. This strain, designated SK20-1T, grew at 31-58 degrees C, with optimum growth at 50 degrees C, while no growth was observed below 28 or above 60 degrees C. The pH range for growth was 5.4-8.7, with optimum growth at pH 7.0, while no growth was observed below pH 5.0 or above pH 9.1. Strain SK20-1T was able to hydrolyse polysaccharides such as cellulose, xylan and chitin. The DNA G+C content was 54.0 mol%. The major fatty acid was iso-C17:0 and the major menaquinone was MK-9(H2). The cell wall contained glutamic acid, serine, alanine and ornithine in a molar ratio of 1.00:1.07:2.64:0.83. The polar lipids consisted of phosphatidylinositol, phosphatidylinositol mannosides, phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid. Cell-wall sugars were rhamnose and mannose. Detailed phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SK20-1T belongs to the class Ktedonobacteria, and that the strain is most closely related to Ktedonobacter racemifer SOSP1-21(T) (88.5 %). On the basis of its phenotypic features and phylogenetic position, we propose that SK20-1T represents a novel genus and species, Thermosporothrix hazakensis gen. nov., sp. nov., within the new family Thermosporotrichaceae fam. nov. The type strain of Thermosporothrix hazakensis is strain SK20-1(T) (=JCM 16142T =ATCC BAA-1881T). In addition, we propose an emended description of the class Ktedonobacteria to classify the class in the phylum Chloroflexi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call