Abstract

With the help of the nonequilibrium Green's function technique, we theoretically analyze the thermospin property through a typical T-shaped spin valve with spin-flip scattering in the linear regime. The influences of spin-flip coefficient of interdot λ, spin-flip coefficient of intradot η and interdot hopping coefficient t+δσΔt on thermospin property are discussed. As interdot hopping coefficient t is equal to energy level ε, the spectrum of Gs shows Fano-like effect with ε variation. Antiresonance position of Gs is almost unchanged and its width becomes narrower with ε increasing. Spin thermopower Ss is close to the maximum of the peak and charge thermopower Sc is equal to zero for t=ε. As a result, the pure spin thermopower Ss can be obtained, which means that a pure spin current may be produced by a temperature gradient in our system. It is found that spin figure of merit ZTs can reach a considerable value by adjusting key parameters of the system, such as Δt, β, α, ϕ. The typical T-shaped spin valve can be treated as a stable thermospin battery which allows to convert the heat energy to spin voltage, thus produces the pure spin current in the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.