Abstract

Thermosolutal convection flow and its effect on the heat and the mass transfer in a square enclosure is studied experimentally. Both thermal and solute diffusion are induced from the sides, and natural convection is initiated by the combined thermal and solutal buoyancies, which either augment or oppose to each other. The solute diffusion is initiated in an electrochemical system that uses copper sulfate-sulfuric acid solution as an electrolyte. Depending on the magnitude of buoyancy ratio, three different kinds of flow regimes and structures can occur, which lead to different distributions of concentration in the enclosure. The formation and growth of layered flow structure is attributed to the solutal boundary-layer flow that can intrude and accumulate along the horizontal wall. The nearly stagnant layer that occurs can reduce the heat transfer rate. The Nusselt numbers at different flow regimes are measured and correlated in terms of relevant nondimensional parameters. This suggests the correlation of ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call