Abstract

A thermosize junction consists of two different sized structures made using the same material. Classical and quantum thermosize effects (CTSEs and QTSEs), which are opposite to each other, induce a thermosize potential in a thermosize junction. A semi-analytical method is proposed to calculate thermosize potentials in wide ranges of degeneracy and confinement by considering both CTSEs and QTSEs in thermosize junctions made using semiconductors. Dependencies of thermosize potential on temperature, size, and degeneracy are examined. It is shown that a potential difference in millivolt scale can be induced as a combined effect of CTS and QTS. The highest potential is obtained in nondegenerate limit where the full analytical solution is obtained. The model can be used to design semiconductor thermosize devices for a possible experimental verification of CTSEs and QTSEs, which may lead to new nano energy conversion devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.