Abstract

This study explores the use of liquid-liquid extraction with thermosensitive polymers for producing laccase (Lac) from Pleurotus sajor-caju. This process leverages liquid waste from the citrus industry, specifically pulp wash. The research delves into extractive fermentation and thermoseparation, both processes being facilitated by a polymer exhibiting a lower critical solution temperature transition. Key factors considered include the choice of polymer, its concentration, pH, separation temperature, and the behavior of the polymer-rich phase post-extractive fermentation concerning the lower critical solution temperature. Notably, under conditions of 45% by weight of Pluronic L-61 and pH 5.0 at 25 °C, the Lac resulted in an enhancement in the purification factor of 28.4-fold, compared with the Lac obtained directly from the fermentation process on the eighth day. There was an 83.6% recovery of the Lac enzyme in the bottom phase of the system. Additionally, the unique properties of Pluronic L-61, which can induce phase separation and also allow for thermoseparation, led to a secondary fraction (aqueous solution) of Lac with purification factor of 2.1 ± 0.1-fold (at 32 ± 0.9 °C and 30 ± 0.3 min without stirring) from the polymeric phase (top phase). Fourier-transform infrared analysis validated the separation data, particularly highlighting the α-helix content in the amide I region (1600-1700 cm-1 ). In summary, the insights from this study pave the way for broader industrial applications of these techniques, underscoring benefits like streamlined process integration, heightened selectivity, and superior separation efficacy. © 2023 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call