Abstract

Thermochemotherapy exhibits a synergistic therapeutic efficiency for cancer, and the sensitivity of cancer cells to chemical drugs could be increased to a large extent at elevated temperature. In this work, a biocompatible nanocomposite thermosensitive mesoporous carbon nanoparticles (TSMCN) was prepared by covering a liposome on mesoporous carbon nanoparticles (MCN). The TSMCN had good photothermal efficiency and photostability. The doxorubicin (DOX)-loaded TSMCN (DOX/TSMCN) showed a slower release than the DOX-loaded MCN-COOH (DOX/MCN-COOH) both in simulated tumor environment and physiological environment. And release curves of DOX/TSMCN exposed to NIR laser exhibited the fast release property. The confocal laser scanning microscopy results illustrated that cellular uptake of DOX for DOX/TSMCN can be enhanced by NIR laser. The temperature of the tumor site reached up to 51.9 °C within 3 min after exposure to laser at 1.25 W/cm2 power density, which is above the phase transition temperature ( Tm) of liposome (40.7 °C). The biodistribution of DOX in vivo indicated that NIR laser can prolong the retardation time of DOX in the tumor site. The results of both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and antitumor efficiency elucidated that the DOX/TSMCN under NIR irradiation had a synergistic therapeutic effect for cancer. Thus, the TSMCN could be explored as a powerful nanoplatform that shows great prospect in thermochemotherapy of tumor therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.