Abstract

Extracellular matrix loss is one of the early manifestations of intervertebral disc degeneration. Stem cell-based tissue engineering creates an appropriate microenvironment for long term cell survival, promising for NP regeneration. We created a decellularized nucleus pulposus hydrogel (DNPH) from fresh bovine nucleus pulposus. Decellularization removed NP cells effectively, while highly preserving their structures and major biochemical components, such as glycosaminoglycan and collagen II. DNPH could be gelled as a uniform grid structure in situ at 37°C for 30 min. Adding adipose marrow-derived mesenchymal stem cells into the hydrogel for three-dimensional culture resulted in good bioactivity and biocompatibility in vitro. Meanwhile, NP-related gene expression significantly increased without the addition of exogenous biological factors. In summary, the thermosensitive and injectable hydrogel, which has low toxicity and inducible differentiation, could serve as a bio-scaffold, bio-carrier, and three-dimensional culture system. Therefore, DNPH has an outstanding potential for intervertebral disc regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.