Abstract

Controlled drug release with on demand is an important challenge for drug delivery. Near-infrared (NIR) light triggered drug delivery reflected the development of a significant strategy to control drug release based on photothermal effects. Herein, a sustained and controlled drug delivery system was developed based on a PCL–PEG–PCL thermosensitive hydrogel combined with chitosan-multiwalled carbon nanotubes for a near infrared light triggered drug delivery. Carbon nanotubes that incorporate hydrogel can enhance the sustained effect of drug delivery by a dual-stage release and allow drug delivery by controlling light irradiation. This in situ photothermal process was monitored by thermal imaging and the controlled drug delivery of doxorubicin was tracked in real-time by fluorescence imaging in vivo based on the fluorescence ability of the drug using nude mice as models. The results suggest that the photothermal effect of the carbon nanotubes can disrupt the structure of the hydrogel with a gel–sol transition, triggering the release of the drug from the sustained drug delivery system by NIR irradiation while responding on demand. The sustained and controlled drug delivery has the potential to implement the accurate administration of hydrogel-based drug delivery systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.