Abstract

Alveolar bone defects can arise as a consequence of trauma, infection, periodontal disease, or congenital alveolar fenestration. Many approaches have been employed in an effort to treat or overcome such defects, but the ability to effectively achieve alveolar regeneration remains elusive. Platelet-derived growth factor-BB (PDGF-BB) has been shown to serve as a key factor capable of orchestrating cell proliferation, angiogenesis, and chemoattraction in the context of osteogenic processes. Exactly how PDGF-BB affects human periodontal ligament stem cells (hPDLSCs), however, requires further exploration. In this report, we utilized a lentiviral construct to achieve PDGF-BB overexpression in hPDLSCs, allowing us to establish that this gene was able to enhance the proliferation of these cells and to mediate osteogenic gene upregulation therein. In addition, we established a rat model of alveolar defects that were implanted using different complexes, and then monitored through histological and micro-CT analyses 4 and 8 weeks postsurgery to assess bone repair outcomes. These analyses revealed that a thermosensitive hydrogel was an effective 3D cell culture scaffold, while PDLSCs overexpressing PDGF-BB enhanced bone growth in the context of alveolar bone defects. Together, these results thus indicate that PDGF-BB represents a potent means of promoting stem cell-based alveolar bone tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.