Abstract

Thermorubin is a tetracyclic naphthoisocoumarin natural product that demands investigation due to its novel mechanism of bacterial protein synthesis inhibition and its unusual structural features. In this work, we describe the identification of the biosynthetic cluster responsible for thermorubin from the sequenced Laceyella sacchari producer species and its confirmation via heterologous production in Escherichia coli. Based on an in-depth annotation of the cluster, we propose a biosynthetic pathway that accounts for the formation of the unique, nonterminal pyrone. Additionally, the expression and use of salicylate synthase TheO enabled testing of the stability properties of this extremophile-derived enzyme. TheO displayed rapid kinetics and a remarkably robust secondary structure, converting chorismate to salicylate with a KM of 109 ± 12 μM, kcat of 9.17 ± 0.36 min-1, and catalytic efficiency (kcat/KM) of 84 ± 9 nM-1 min-1, and retained significant activity up to 50 °C. These studies serve as the basis for continued biosynthetic investigations and bioinspired synthetic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.