Abstract

The development of intrinsically recyclable cross-linked materials remains challenged by the inherently unfavorable chemical equilibrium that dictates the efficiency of the reversible covalent bonding/debonding chemistry. Rather than having to (externally) manipulate the bonding equilibrium, we here introduce a new reversible chemistry platform based on monosubstituted thiomaleimides that can undergo complete and independent light-activated covalent bonding and on-demand thermal debonding above 120 °C. Specifically, repeated bonding/debonding of a small-molecule thiomaleimide [2 + 2] photodimer is demonstrated over five heat/light cycles with full conversion in both directions, thereby regenerating its initial monothiomaleimide constituents. This motivated the synthesis of multifunctional thiomaleimide reagents as precursors for the design of covalently cross-linked networks that display intrinsic switching between a monomeric and polymeric state. The resulting materials are shown to covalently dissociate and depolymerize upon heating both in solution and in bulk, thus transforming the densely photo-cross-linked material back into a viscous liquid. Temperature-regulated photorheology evidenced the intrinsic recyclability of the thiomaleimide-based thermosets during multiple cycles of UV cross-linking and thermal de-cross-linking. The thermally reversible photodimerization of thiomaleimides presents a new addition to the designer playground of dynamic polymer networks, providing interesting opportunities for the reprocessing and closed-loop recycling of covalently cross-linked materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call