Abstract

Abstract Shape memory polymers (SMPs) are developed by blending and cross-linking polymers which include crystalline domains and cross-linked networks. In this paper, we describe the morphology, thermal and shape memory behavior of methyl vinyl silicone rubber (MVMQ)/olefin block copolymer (OBC) blends prepared by a melt-blending and chemical cross-linking method. MVMQ without crystalline domains could not hold its temporary shape. After introducing the OBC, the obtained blends exhibited excellent dual shape memory properties. The cross-linking networks of MVMQ acted as reversible domains, while crystalline regions of OBC worked as fixed domains. When the blending ratio of MVMQ/OBC was 50/ 50, the blend had both a high shape fixity ratio and shape recovery ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.