Abstract

The main aim of this work is to design a heat triggered transdermal drug delivery system (TDDS) using a thermoresponsive polymer, poly (N-vinyl caprolactam) [PNVCL] based gel, where in patients can themselves administer a pulse of drug on mere application of heat pad over the TDDS, whenever pain is experienced. The phase transition temperature of PNVCL was tuned to 35°C by grafting it onto a pH sensitive biopolymer, Chitosan, to synthesize Chitosan-g-PNVCL (CP) co-polymer which render the gel both thermo- and pH-responsive property. The application of triggered delivery was explored by loading acetamidophenol (a model hydrophilic drug) and etoricoxib (a model hydrophobic drug). In vitro drug release experiments were performed at three different temperatures (25, 32 and 39°C) at two different pH (5.5 and 7) to study its drug release with response to temperature and pH. Drug release profiles obtained were found to have enhanced release for both the drugs respectively at 39°C (above LCST) and pH5.5 when compared to other release conditions. In vitro skin permeation of both the drugs performed in rat abdominal skin using Franz diffusion cell showed enhanced drug release when the skin was subjected to higher temperature (39°C). Moreover, it was also found that skin permeation for hydrophobic drug was better than that of hydrophilic drug. The in vivo biocompatibility studies of the CP gel in rat skin proved that the gel is biocompatible. The results obtained demonstrated the potential use of the thermoresponsive CP gel as an on-demand localized drug delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.