Abstract

Poly(N-isopropylacrylamide), one of the most utilized thermoresponsive polymers, brush-grafted monolithic-silica columns were prepared through surface-initiated atom transfer radical polymerization (ATRP) for effective thermoresponsive-chromatography matrices. ATRP initiator was grafted on monolithic silica-rod surfaces by flowing a toluene solution containing ATRP initiator into monolithic silica-rod columns. N-Isopropylacrylamide (IPAAm) monomer and CuCl/CuCl(2)/Me(6)TREN, an ATRP catalytic system, were dissolved in 2-propanol, and the reaction solution was pumped into the preprepared initiator-modified columns at 25 °C for 16 h. The constructed PIPAAm-brush structure on the monolithic silica-rod surface was confirmed by XPS, elemental analysis, SEM observation, and GPC measurement of grafted PIPAAm. The prepared monolithic silica-rod columns were also characterized by chromatographic analysis. PIPAAm-brush-modified monolithic silica-rod columns were able to separate hydrophobic steroids with a short analysis time (10 min), compared to PIPAAm-brush-modified silica-beads-packed columns, because of the horizontally limited diffusion path length of monolithic supporting materials. Additionally, diluted PIPAAm-brush monolithic silica-rod column gave a further shorting analysis time (5 min). These results indicated (1) surface-initiated ATRP constructed PIPAAm-brush structures on monolithic silica-rod surfaces and (2) PIPAAm-brush grafted monolithic silica-rod column prepared by ATRP was a promising tool for analyzing hydrophobic-bioactive compounds with a short analysis time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.