Abstract

Thermoresponsive nanoemulsions find utility in applications ranging from food to pharmaceuticals to consumer products. Prior systems have found limited translation to applications due to cytotoxicity of the compositions and/or difficulties in scaling-up the process. Here, we report a route to thermally gel an oil-in-water nanoemulsion using a small amount of FDA-approved amphiphilic triblock Pluronic copolymers which act as gelling agents. At ambient temperature the suspension displays liquid-like behavior, and quickly becomes an elastic gel at elevated temperatures. We propose a gelation mechanism triggered by synergistic action of thermally-induced adsorption of Pluronic copolymers onto the droplet interface and an increased micelle concentration in the aqueous solution. We demonstrate that the system’s properties can be tuned via many factors and report their rheological properties. The nanoemulsions are prepared using a low-energy process which offers an efficient route to scale-up. The nanoemulsion formulations are well-suited for use in cosmetics and pharmaceutical applications.

Highlights

  • Thermoresponsive nanoemulsions find utility in applications ranging from food to pharmaceuticals to consumer products

  • The key components in the oil-in-water thermogelling nanoemulsion are chosen among the U.S Food and Drug Administration’s (FDA) approved compounds, which provides a compatible environment for incorporating pharmaceutical agents

  • The key concept in the present system is the exploitation of hydrophobic interactions between the amphiphilic triblock copolymers and nanoemulsion droplets which work cooperatively in inducing the gel formation

Read more

Summary

Introduction

Thermoresponsive nanoemulsions find utility in applications ranging from food to pharmaceuticals to consumer products. To evaluate the adsorption of the midblock (PPO) in the Pluronic onto hydrophobic oil interfaces during ramping temperature experiments, the thermogelling nanoemulsion was diluted to decrease the viscosity of the solution sufficiently to load the samples for micro-DSC measurements and to avoid saturating the maximum detection range of the instrument.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.