Abstract

High-performance adsorption and easy-to-recycle property of adsorbents are desirable in wastewater treatment, and a suitably smart adsorbent with responsive phase separation capacity is promising in this regard. Herein, a thermoresponsive composite system is designed through the combination of transition metal carbides (MXene) and poly(N-isopropylacrylamide) (PNIPAM) for removal of toxic metal ions from water. As a thermoresponsive switch, the PNIPAM endows such composite system with superior thermoresponsiveness (i.e., gel-water phase separation) in water, which facilitates to the control of adsorption. The gel phase triggered by an elevated temperature (e.g., 40 °C) quickly adsorbs toxic metal ions, and then a solid-liquid extraction way is used to conveniently separated the gel phase from water phase for simple removal of toxic metal ions. A very high adsorption capacity (e.g., ~224 mg·g−1 for Cu2+) can be achieved due to the synergistic effects of the composite system. Moreover, the separated gel can be back to a redispersed state at low temperature (e.g., 20 °C), enabling its effective regeneration and recovery. Notably, the PNIPAM as a protective agent prevents the oxidation of MXene so as to retain good stability during the multiple adsorption/desorption cycles. This simple and smart adsorption strategy is great promising for water purification application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.