Abstract

Due to the circadian rhythm regulation of almost every biological process in the human body, physiological and biochemical conditions vary considerably over the course of a 24-h period. Thus, optimal drug delivery and therapy should be effectively controlled to achieve the desired therapeutic plasma concentrations and therapeutic drug responses at the required time according to chronopharmacological concepts, rather than continuous maintenance of constant drug concentrations for an extended time period. For many drugs, it is not always necessary to constantly deliver a drug into the human body under disease conditions due to rhythmic variations. Pulsatile drug delivery systems (PDDSs) have been receiving more attention in pharmaceutical development by providing a predetermined lag period, followed by a fast or rate-controlled drug release after application. PDDSs are characterized by a programmed drug release, which may release a drug at repeatable pulses to match the biological and clinical needs of a given disease therapy.This review article focuses on thermoresponsive gating membranes embedded with liquid crystals (LCs) for transdermal drug delivery using PDDS technology. In addition, the principal rationale and the advanced approaches for the use of PDDSs, the marketed products of chronotherapeutic DDSs with pulsatile function designed by various PDDS technologies, pulsatile drug delivery designed with thermoresponsive polymers, challenges and opportunities of transdermal drug delivery, and novel approaches of LC systems for drug delivery are reviewed and discussed. A brief overview of all academic research articles concerning single LC- or binary LC-embedded thermoresponsive membranes with a switchable on-off permeation function through topical application by an external temperature control, which may modulate the dosing interval and administration time according to the therapeutic needs of the human body, is also compiled and presented. In the near future, since thermal-based approaches have become a well-accepted method to enhance transdermal delivery of different water-soluble drugs and macromolecules, a combination of the thermal-assisted approach with thermoresponsive LCs membranes will have the potential to improve PDDS applications but still poses a great challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.