Abstract

Well-defined amphiphilic block copolymers composed of S-vinyl sulfides and N-isopropyl acrylamide (NIPAM) were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. Thermoresponsive core–shell nanoparticles with cross-linked π-conjugate cores were obtained by in situ cross-linking reactions between 4-bromophenyl moieties in the block copolymers and diboronic acids or a diamine compound in the presence of a palladium catalyst following micelle formation in ethanol/H2O or ethanol. We initially investigated RAFT polymerization of two S-vinyl sulfide derivatives, namely phenyl vinyl sulfide (PVS) and 4-bromophenyl vinyl sulfide (BPVS), using a dithiocarbamate-type chain transfer agent (CTA). Then, RAFT polymerization of NIPAM using poly(S-vinyl sulfide) macro-CTAs was conducted to synthesize the amphiphilic block copolymers. Suzuki and Buchwald-Hartwig coupling reactions were found to be effective in the preparation of core–shell nanoparticles with thermoresponsive shells and cross-linked optoelectronic cores. The resulting nanoparticles showed characteristic thermoresponsive properties, as confirmed by turbidity and dynamic light scattering measurements. Stable and uniform core cross-linked nanoparticles were successfully prepared by the in situ palladium-catalyzed coupling reactions, and the optoelectronic and thermoresponsive properties of the nanoparticles could be tuned depending on the nature of the difunctional coupling agents, reaction conditions, and comonomer composition of the block copolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call