Abstract
Sample desalting and concentration are crucial steps before matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis. Current sample pretreatment approaches require tedious fabrication and operation procedures, which are unamenable to high-throughput analysis and also result in sample loss. Here, we report the development of a smart MALDI substrate for on-plate desalting, enrichment, and direct MS analysis of protein digests based on thermoresponsive, hydrophilic/hydrophobic transition of surface-grafted poly(N-isopropylacrylamide) (PNIPAM) microarrays. Superhydrophilic 1-thioglycerol microwells are first constructed on alkyne-silane-functionalized rough indium tin oxide substrates based on two sequential thiol-yne photoclick reactions, whereas the surrounding regions are modified with hydrophobic 1H,1H,2H,2H-perfluorodecanethiol. Surface-initiated atom-transfer radical polymerization is then triggered in microwells to form PNIPAM arrays, which facilitate sample loading and enrichment of protein digests by concentrating large-volume samples into small dots and achieving on-plate desalting through PNIPAM configuration change at elevated temperature. The smart MALDI plate shows high performance for mass spectrometric analysis of cytochrome c and neurotensin in the presence of 1 M urea and 100 mM NaHCO3, as well as improved detection sensitivity and high sequence coverage for α-casein and cytochrome c digests in femtomole range. The work presents a versatile sample pretreatment platform with great potential for proteomic research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.