Abstract

AbstractUnderstanding Earth's geodynamo provides us a window into the evolution of the Earth's core, which requires accurate data about how its strength varies with time. Classic Thellier‐style paleointensity experiments assume that studied specimens contain only noninteracting single‐domain (SD) magnetic particles. Interacting grains commonly occur in volcanic rocks but are generally assumed to behave like equivalently sized SD grains. Multidomain (MD) grains can cause erroneous PI estimates or cause Thellier‐style experiments to fail entirely. Synthetic specimens containing naturally formed magnetite with MD grains and oxyexsolved titanomagnetite (closely packed SD grains) were subjected to various partial thermoremanent magnetization (pTRM) experiments, which tested nonideal behavior as a function of pTRM acquisition and loss inequality, thermal history, and repeated heating steps. For all grain sizes and domain states, pTRMc (heating and cooling in a nonzero field) gives larger values, compared to pTRMb (heating in a zero field and cooling in a nonzero field), by ∼5.5%. Oxyexsolved grains appear prone to the same concave‐up, nonideal Arai plots commonly observed in MD specimens, which also has potential implications for the multiple‐specimen, domain‐state corrected protocol. Repeated heatings cause additive deviations from ideality with relatively small impacts on Arai plot curvature for both grain types. Experiments with higher initial demagnetization temperatures had lower curvatures, with the most SD‐like behavior occurring in the uppermost 20 C of the (un)blocking temperature range. Samples containing mixtures of magnetic domain sizes are likely to behave less ideally at lower temperatures but become more ideal with increasing temperature as the nonideal grains unblock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.