Abstract

The preoptic anterior hypothalamus (POAH) thermoregulatory controller can be characterized by two types of control, an adjustable setpoint temperature and changing POAH thermal sensitivity. Setpoint temperatures for shivering ( T shiver) and panting ( T pant) both increased with decreasing ambient temperature ( T a), and decreased with increasing T a. The POAH controller is twice as sensitive to heating as to cooling. Metabolic rate (MR) increased during both heating and cooling of the POAH. Resting temperature of the POAH was lower than internal body temperature ( T b) at all temperatures. This indicates the presence of some form of brain cooling mechanism. Decreased T b during POAH heating was a result of increased heat dissipation, while higher T b during POAH cooling was a result of increased heat production and reduced heat dissipation. The surface temperature responses indicated that foxes can actively control heat flow from body surface. Such control can be achieved by increased peripheral blood flow and vasodilation during POAH heating, and reduced peripheral blood flow and vasoconstriction during POAH cooling. The observed surface temperature changes indicated that the thermoregulatory vasomotor responses can occur within l min following POAH heating or cooling. Such a degree of regulation can be achieved only by central neural control. Only surface regions covered with relatively short fur are used for heat dissipation. These thermoregulatory effective surface areas account for approximately 33% of the total body surface area, and include the area of the face, dorsal head, nose, pinna, lower legs, and paws.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.