Abstract

This study sought to assess the within-subject influence of acute hypoxia on exercise-induced changes in core temperature and sweating. Eight participants [1.75 (0.06) m, 70.2 (6.8) kg, 25 (4) yr, 54 (8) ml·kg-1·min-1] completed 45 min of cycling, once in normoxia (NORM; [Formula: see text] = 0.21) and twice in hypoxia (HYP1/HYP2; [Formula: see text]= 0.13) at 34.4(0.2)°C, 46(3)% RH. These trials were designed to elicit 1) two distinctly different %V̇o2peak [NORM: 45 (8)% and HYP1: 62 (7)%] at the same heat production (Hprod) [NORM: 6.7 (0.6) W/kg and HYP1: 7.0 (0.5) W/kg]; and 2) the same %V̇o2peak [NORM: 45 (8)% and HYP2: 48 (5)%] with different Hprod [NORM: 6.7 (0.6) W/kg and HYP2: 5.5 (0.6) W/kg]. At a fixed %V̇o2peak, changes in rectal temperature (ΔTre) and changes in esophageal temperature (ΔTes) were greater at end-exercise in NORM [ΔTre: 0.76 (0.19)°C; ΔTes: 0.64 (0.22)°C] compared with HYP2 [ΔTre: 0.56 (0.22)°C, P < 0.01; ΔTes: 0.42 (0.21)°C, P < 0.01]. As a result of a greater Hprod (P < 0.01) in normoxia, and therefore evaporative heat balance requirements, to maintain a similar %V̇o2peak compared with hypoxia, mean local sweat rates (LSR) from the forearm, upper back, and forehead were greater (all P < 0.01) in NORM [1.10 (0.20) mg·cm-2·min-1] compared with HYP2 [0.71 (0.19) mg·cm-2·min-1]. However, at a fixed Hprod, ΔTre [0.75 (0.24)°C; P = 0.77] and ΔTes [0.63 (0.29)°C; P = 0.69] were not different in HYP1, compared with NORM. Likewise, mean LSR [1.11 (0.20) mg·cm-2·min-1] was not different (P = 0.84) in HYP1 compared with NORM. These data demonstrate, using a within-subjects design, that hypoxia does not independently influence thermoregulatory responses. Additionally, further evidence is provided to support that metabolic heat production, irrespective of %V̇o2peak, determines changes in core temperature and sweating during exercise.NEW & NOTEWORTHY Using a within-subject design, hypoxia does not independently alter core temperature and sweating during exercise at a fixed rate of heat production. These findings also further contribute to the development of a methodological framework for assessing differences in thermoregulatory responses to exercise between various populations and individuals. Using the combined environmental stressors of heat and hypoxia we conclusively demonstrate that exercise intensity relative to aerobic capacity (i.e., %V̇o2max) does not influence changes in thermoregulatory responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.