Abstract

Entering torpor can yield significant energy savings for temperate-zone bats but can be costly for reproductive females by slowing fetal development and reducing milk production. We studied western long-eared bats (Myotis evotis (H. Allen, 1864)) in the Rocky Mountains of Alberta to test the hypothesis that different costs of torpor result in different patterns of thermoregulation and roosting behaviour for reproductive and nonreproductive females. We radio-tracked bats to monitor body temperatures and locate roosts. We took roost measurements and inserted temperature data loggers to measure roost microclimate. Bats entered torpor frequently, but nonreproductive females spent longer periods in torpor, had lower minimum body temperatures, and entered deep torpor more often than reproductive females did, supporting the hypothesis that entering torpor is more costly for reproductive individuals. Roosts were located mainly in rock fields on steep, open, south-facing slopes. Reproductive females roosted in crevices between rocks located above or on the surface of the ground. Roosts warmed rapidly and reached warm daytime temperatures. Females roosted alone during pregnancy but formed small colonies within roosts during lactation when ambient conditions were cooler. Clustering may reduce thermoregulatory costs for both adults and young. Nonreproductive females roosted mainly alone in crevices in the ground. These roosts had cooler, more stable microclimates, allowing females to enter deeper bouts of torpor and remain torpid longer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call