Abstract

The energy-filtering effect was successfully employed at the organic–inorganic semiconductor interface of poly(3-hexylthiophene) (P3HT) nanocomposites with the addition of Bi2Te3 nanowires, where low-energy carriers were strongly scattered by the appropriately engineered potential barrier of the P3HT–Bi2Te3 interface. The resulting P3HT–Bi2Te3 nanocomposites exhibited a high power factor of 13.6 μW K−2 m−1 compared to that of 3.9 μW K−2 m−1 in P3HT. The transport characteristics of nanocomposites, including the carrier concentration, mobility, and energy-dependent scattering parameter, were revealed by the experimental measurements of electrical conductivity, Seebeck coefficient, and Hall coefficient to quantitatively elucidate the carrier energy scattering at the P3HT–Bi2Te3 interface. The ability to rationally engineer the organic–inorganic semiconductor interfaces of polymer nanocomposites to achieve an improved Seebeck coefficient and power factor provides a potential route to high-performance, large-area, and flexible polymer thermoelectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.