Abstract

AbstractThermoplastic polyurethane/silica nanocomposite fibers with good mechanical properties were prepared by electrospinning, using colloidal silica as the source of silica and dimethyl formamide as the solvent. The fiber morphology was examined by field emission scanning electron microscopy. The average fiber diameter is about 0.8 μm with 0–10 wt % silica, and silica nanoparticles were observed on all fiber surfaces. X‐ray photoelectron spectroscopy analysis of Si in combination with transmission electron microscopy observation suggest that silica nanoparticles have a fairly uniform distribution in the fibers rather than enriching on the fiber surfaces. Tensile tests show that the incorporation of silica nanoparticles can bring about a significant reinforcing effect without decreasing the ductility. The reinforcing effect is further confirmed by dynamic mechanical analysis. The thermoplastic polyurethane/silica composite fiber mats can adsorb gold nanoparticles after further treatment with 3‐aminopropyltriethoxysilane, demonstrating that the composite fibers could be used as functional fibers by using the properties of silica nanoparticles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.