Abstract

Bio-based poly(δ-decalactone) is an amorphous, low glass transition temperature (Tg) material and it is an aliphatic polyester (Martello et al., ACS Macro Lett., 2011) that can be utilized as a soft segment in thermoplastic polyurethanes (TPU). We describe the synthesis and purification of low molar mass poly(δ-decalactone) diols (PdDL), as well as the synthesis and characterization of new PdDL-based TPUs. The PdDLs obtained were characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy and matrix-assisted laser desorption ionization mass spectroscopy. Three different PdDLs were prepared and their molar masses calculated from 1H-NMR spectroscopy were: Mn ≈ 1300, 1800 and 2700 g mol−1. These three PdDLs were reacted with 4,4′-methylenebis(phenyl isocyanate) and two different chain extenders (1,4-butanediol and water), to synthesize polyester-based TPUs. The TPUs made from PdDLs with Mn of 1800 and 2700 exhibit good elastomeric properties and their Tg values are around −40 °C. With water as chain extender urea bonds were created, which gave TPUs with higher modulus, higher stress at break and lower hysteresis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call