Abstract

AbstractPolymer blending coupled with nanofillers has been widely accepted as one of the cheaper methods to develop high‐performance polymeric materials for various applications. In the present work, dodecyl sulfate intercalated MgAl‐based layered double hydroxide (DS‐LDH) was used as nanofiller in the synthesis of polyurethane blended with nitrile butadiene rubber (PU/NBR; 1:1 w/w) nanocomposites, which were subsequently characterized. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the partial dispersion of MgAl layers in PU/NBR blends at lower filler content followed by aggregation at higher filler loading. In comparison to the neat PU/NBR blend, the tensile strength (156%) and elongation at break (21%) show maximum improvement for 1 wt% filler loading. The storage and loss moduli, thermal stability and limiting oxygen index of the nanocomposites are higher compared to the neat PU/NBR blend. Glass transition temperature and swelling measurements increase up to 3 wt% DS‐LDH loading in PU/NBR compared to either neat PU/NBR or its other corresponding nanocomposites. XRD and TEM analyses indicate the partial distribution of DS‐LDH in PU/NBR blends suggesting the formation of partially exfoliated nanocomposites. The improvements in mechanical, thermal and flame retardancy properties are much greater compared to the neat blend confirming the formation of high‐performance polymer nanocomposites. Copyright © 2009 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.