Abstract

AbstractElectrocopolymerization of 3‐carboxyphenyl maleimide and styrene onto Hercules AS‐4 graphite fiber surfaces has been successfully carried out from an aqueous solution containing monomers and dilute sulfuric acid. Initiation of copolymerization of the monomers dissolved in a small amount of dimethylacetamide is achieved by constant‐current electrolysis in the cathodic chamber of a three‐compartment electrolysis cell. Polymerization is initiated at the fiber surfaces; little polymer is formed in the cell solution. Electrocopolymerization is very consistent and rapid. The amount of polymer increases predictably with increasing comonomer concentration and current density. Using a 0.4 M (1 : 1) comonomer concentration, 0.0125 M sulfuric acid solution, and a current density of 20 mA/g, more than 60 wt % of copolymer coating per unit weight of graphite fibers is obtained within thirty minutes. Thermal gravimetric analysis showed the copolymer to be very stable at elevated temperatures and has initial and final decomposition temperatures of 430 and 520°C, respectively. The glass transition temperature measurement of the copolymer coatings was carried out by differential scanning calorimetry. A single glass transition temperature was obtained of about 210°C for most samples. The glass transition temperature of the copolymers did not change significantly with changing comonomer feed composition. Functional group and compositional analysis of the copolymer was done by FTIR spectroscopy. The copolymer composition remained relatively the same for copolymers made from different styrene/3‐carboxyphenyl maleimide feed composition, confirming a strong tendency toward alternation for the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.