Abstract

Uranium–molybdenum alloy dispersion fuel meats are being studied for utilization as a research reactor fuel. Thermophysical properties of U–Mo/Al dispersion fuel, where U–Mo was dispersed in aluminum in research reactor fuel for the study, were determined by computing the thermal conductivity through measurements of the specific heat capacity and thermal diffusivity. Uranium molybdenum powder was first fabricated and utilized as U–Mo/Al dispersion fuel; the molybdenum-to-uranium ratios were 6, 8, and 10 mass% to produce the initial powder, which was then combined with aluminum (Al 1060). The volume fractions of U–Mo powder to aluminum were 10, 30, 40, and 50 vol.% to fabricate the dispersion fuel. The thermal diffusivity and specific heat capacity were measured by the laser-flash and differential scanning calorimetry (DSC) methods, respectively. Although the thermal diffusivity showed a decreasing trend with the U–Mo volume fraction when the dispersion quantity was insignificant, the trend reversed with a higher dispersion level. The specific heat capacity increases monotonically with temperature; its value is larger for a smaller dispersion level. Additionally, the overall thermal conductivity increases with temperature. Finally, the thermal conductivity decreases with an increase in the amount of U–Mo powder in the dispersion fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call