Abstract

Fluorene (H0-F) and perhydrofluorene (H12-F) represent process-related byproducts formed by a dehydrocyclization step in the liquid organic hydrogen carrier (LOHC) system based on diphenylmethane (H0-DPM) and dicyclohexylmethane (H12-DPM). The influence of these byproducts on the liquid viscosity, surface tension, and liquid density of the DPM-based system was experimentally determined by studying three dehydrogenated binary mixtures with H0-F mole fractions of 0.05, 0.10, and 0.20 as well as one hydrogenated binary mixture with an H12-F mole fraction of 0.10 close to 0.1 MPa from (283–573) K. The densities increase with increasing share of H0-F or H12-F by around 1% per added byproduct mole fraction of 0.1. For the surface tension, an increase relative to the values of H0-DPM or H12-DPM by up to 6% is found. The addition of H0-F to H0-DPM or H12-F to H12-DPM yields a relative increase in viscosity by up to 9% at the lowest temperature studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call