Abstract

This research is concerned with the development of quantitative scientific descriptions of the thermodynamic and transport properties of supercritical and subcritical fluids and fluid mixtures. It is well known that the thermophysical properties of fluids and fluid mixtures exhibit singular behavior at critical points. Asymptotically close to critical points the thermophysical properties satisfy scaling laws with universal critical exponents and universal scaling functions. However, the range of validity of these asymptotic scaling laws is very small. It has now been well established that the range of temperatures and densities where various thermophysical properties are affected is quite large. The reason is that the correlation length associated with the critical fluctuations exceeds the short-range molecular interaction range in a sizeable part of the phase diagram of fluids and fluid mixtures. The paper discusses the research accomplishments of the following: Thermodynamic properties of one-component fluids; Thermodynamic properties of fluid mixtures; Transport properties of one-component fluids; and Transport properties of fluid mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.