Abstract

AbstractThis article is dedicated to the study of the thermal parameters of composite materials. A nonlinear least‐squares criterion is used on experimental transfer functions to identify the thermal conductivity and the diffusivity of aluminum‐polymer composite materials. The density measurements were achieved to deduce the specific heat and thereafter they were compared to values given by differential scanning calorimetry measurement. The thermal parameters of the composite material polypropylene/aluminum were investigated for the two different types of aluminum filler sizes. The experimental data were compared with several theoretical thermal conductivity prediction models. It was found that both the Agari and Bruggeman models provide a good estimation for thermal conductivity. The experimental values of both thermal conductivity and diffusivity have shown a better heat transport for the composite filled with large particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 722–732, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.