Abstract
It is necessary to sustain energy from an external reservoir or employ advanced technologies to enhance oil recovery. A greater volume of oil may be recovered by employing nanofluid flooding. In this study, we investigated oil extraction in a two-phase incompressible fluid in a two-dimensional rectangular porous homogenous area filled with oil and having no capillary pressure. The governing equations that were derived from Darcy’s law and the mass conservation law were solved using the finite element method. Compared to earlier research, a more efficient numerical model is proposed here. The proposed model allows for the cost-effective study of heating-based inlet fluid in enhanced oil recovery (EOR) and uses the empirical correlations of the nanofluid thermophysical properties on the relative permeability equations of the nanofluid and oil, so it is more accurate than other models to determine the higher recovery factor of one nanoparticle compared to other nanoparticles. Next, the effect of nanoparticle volume fraction on flooding was evaluated. EOR via nanofluid flooding processes and the effect of the intake temperatures (300 and 350 K) were also simulated by comparing three nanoparticles: , , and . The results show that adding nanoparticles (<5 v%) to a base fluid enhanced the oil recovery by more than 20%. Increasing the inlet temperature enhanced the oil recovery due to changes in viscosity and density of oil. Increasing the relative permeability of nanofluid while simultaneously reducing the relative permeability of oil due to the presence of nanoparticles was the primary reason for EOR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.