Abstract

Thermophysical properties of high temperature liquid iron heated with a CO2 laser have been determined in an aerodynamic levitation device equipped with a high-speed camera and a three-wavelength pyrometer. Characteristic curves of the free cooling and heating of the drop can be used to determine the same apparent emissivity of solid and liquid iron and to calibrate pyrometers based on the known value of the melting point of iron, i.e., 1808 K. Examination of the recalescence of undercooled liquid iron and further solidification are used to obtain the ratio of the melting enthalpy versus the heat capacity of liquid iron as \(\frac{{\Delta H_m }}{{c_P^l }} = 306 \pm 2.5{\text{ K}}\). The surface tension σ was determined from an analysis of the vibrations of liquid drops. Results are accurately described by σ (mJ⋅m−2)=(1888±31)−(0.285±0.015) (T−Tm) between 1750 K (undercooled liquid) and 2500 K. The density of liquid iron has been deduced from the image size and the mass of the liquid iron drops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.