Abstract

Thermophysical properties and oxidation behaviour of the composite pellet UN–20 vol%ZrN were investigated experimentally and compared with the behaviour of the pure UN pellet. A compound of a single phase, a solid solution of the average composition U0.8Zr0.2N, was obtained by Spark Plasma Sintering (SPS) of the powders UN and ZrN. Crystallographic and microstructural characterisation of the composite was performed using Scanning Electron Microscopy (SEM), standardised Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Diffraction (EBSD). Nano hardness and Young’s modulus were also measured by the nanoindentation method. High-Temperature X-ray diffraction (XRD) was applied to obtain the lattice expansion as a function of temperature (room temperature to 673 K). Thermogravimetric Analysis (TGA) was applied to evaluate oxidation behaviour in air. Results demonstrate that the fabrication method results in a matrix of solid solution with homogeneous composition averaged to U0.8Zr0.2N. The mechanical properties of such solution are uniform, with variation only due to the crystallographic orientation of the grains of the solution phase, similar to pure UN. The obtained value for the average linear thermal expansion coefficient is α¯ = 7.94 × 10-6/K, which compares well to UN (α¯ = 7.95 × 10-6/K) for the same temperature range. The degradation behaviour of the composite pellet UN-20 vol%ZrN in air shows a lower oxidation onset temperature, compared to pure UN, with the final product of oxidation being mainly U3O8. Smaller crystallites in the product of corrosion of the composite pellet indicate that the mechanism of degradation of the solid solution phase U0.8Zr0.2N is accompanied by the formation of two distinct oxides and their interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.