Abstract

Multiform NiO nanowalls with a high specific surface area were constructed in situ on carbon foam (CF) to construct NiO@CF/OD composite phase change materials (CPCMs). The synthesis mechanism, microstructures, thermal management capability, and photothermal conversion of NiO@CF/OD CPCMs were systematically studied. Additionally, the collaborative enhancement effects of CF and multiform NiO nanowalls on the thermal properties of OD PCMs were also investigated. NiO@CF not only maintains the porous 3D network structure of CF, but also effectively prevents the aggregation of NiO nanosheets. The chemical structures of NiO@CF/OD CPCMs were analyzed using XRD and FTIR spectroscopy. When combined with CF and NiO nanosheets, OD has high compatibility with NiO@CF. The thermal conductivity of NiO@CF/OD-L CPCMs was 1.12 W/m·K, which is 366.7% higher than that of OD. The improvement in thermal conductivity of CPCMs was theoretically analyzed according to the Debye model. NiO@CF/OD-L CPCMs have a photothermal conversion efficiency up to 77.6%. This article provided a theoretical basis for the optimal design and performance prediction of thermal storage materials and systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.