Abstract

The development and implementation of transient heat transfer characteristics of nanofluids in energy management were studied. Ultrasonic-assisted SiO2/water nanofluids with 0.1–1.5 wt. % were prepared using polyvinyl alcohol (PVA) surfactant. The stability of nanofluids was tested and confirmed using zeta potential and light absorbance measurement. Thermophysical properties of nanofluid were investigated at various weight concentrations from 0.1 to 1.5 wt. % in a temperature range of 25–70°C. Transient heat transfer characteristics of nanofluids were examined. Thermophysical properties were enhanced by adding nanoparticles to base fluid. A major enhancement in transient heat transfer characteristics was obtained by applying SiO2/water nanofluids. The convective heat transfer coefficient (CHTC) was increased up to 2.37 times compared to water. The heat absorbance efficiency of the system is increased by a maximum of 24.54%. Finally, a new CHTC correlation has been proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.