Abstract
Densities and speed of sound were measured experimentally for binary mixtures of terpinolene with cresols (o-cresol, m-cresol, p-cresol) at three different temperatures 303.15, 308.15 and 313.15K at atmospheric pressure. From primary physical properties, some secondary properties like molar volume , excess molar volume , partial molar volume , excess partial molar volume , apparent molar volume , deviation in speed of sound , isentropic compressibility , deviation in isentropic compressibility , acoustical impedance , deviation in acoustical impedances , intermolecular free length , partial molar isentropic compression , excess partial molar isentropic compression and apparent molar isentropic compression were calculated. Infinite dilution apparent molar volume , infinite dilution apparent molar isentropic compression , empirical parameters , and , of the Redlich-Rosenberg-Mayer equation with the limiting apparent molar expansibility were also calculated. Some theoretical speed of sound calculating relations such as Nomoto relation , Ideal mixture relation , Junji relation and Free length theory relation were also calculated with their standard deviation . All the calculated values of excess/deviation properties were fitted with the fourth order Redlich-Kister polynomial equation and their standard deviation values were also calculated. FT-IR spectral analysis of binary mixtures at 4:1, 1:1 and 1:4 composition ratios were carried out at 298.15K. Computational calculations such as optimization of pure and binary mixtures in gas phase, bond length, Mulliken charges, theoretical vibrational frequencies and NBO calculations on basis of the DFT (Density Function Theory) were also carried out. The results were discussed in term of presence of intermolecular interactions, types, strength and behavior with change of temperatures and cresol components in binary mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.