Abstract

The inherent heterogeneity of tumor-derived exosomes holds great promise for enhancing the precision of cancer diagnostics. MicroRNAs (miRNAs) encapsulated in tumor-associated exosomes have emerged as valuable biomarkers for the early detection of cancers. Nevertheless, the flexible structure and inherent instability of RNA limit its application in biological diagnostics. The CRISPR-Cas13a system, distinguished by its target-responsive "collateral effect", represents a powerful tool for advancing cancer diagnostics. In this study, we harness the CRISPR-Cas13a system as an innovative signal amplification tool to image cancer-related exosomal miRNA in situ. Furthermore, we capitalize on the thermophoretic aggregation effect exhibited by gold nanoparticles (Au NPs) to consolidate the fluorescent signals generated by the CRISPR-Cas13a system. Subsequently, the developed nanoprobe is applied to detect lung cancer-related exosomal miRNA from human serum, enabling the aggregated visualization of low-abundance cancer exosomes in individuals with lung cancer compared with healthy individuals. This sensitive thermophoretic aggregation assay provides a diagnostic tool for lung cancer in the clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call