Abstract

This paper presents the theoretical description of steady motion of a moderately large spherical aerosol particle in the external temperature gradient field in the Stokes approximation with Reynolds and Peclet numbers much smaller than unity. It is assumed that the average temperature of the particle surface significantly differs from the temperature of its gaseous environment. Gas dynamics equations are solved with account for the power dependence of molecule transport coefficients (viscosity and thermal conductivity) and the density of the gaseous environment on temperature. Boundary conditions are written in the linear approximation based on the Knudsen number. It is shown that the thermophoretic force and velocity substantially depend on the Knudsen number and the average temperature of the particle surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call