Abstract

AbstractThe axisymmetric thermophoretic motion of an aerosol particle of revolution in a uniformly prescribed temperature gradient is studied theoretically. The Knudsen number is assumed to be small so that the fluid flow is described by a continuum model. A method of distribution of a set of spherical singularities along the axis of revolution within a prolate particle or on the fundamental plane within an oblate particle is used to find the general solutions for the temperature distribution and fluid velocity field. The jump/slip conditions on the particle surface are satisfied by applying a boundary‐collocation technique to these general solutions. Numerical results for the thermophoretic velocity of the particle are obtained with good convergence behavior for various cases. For the axisymmetric thermophoresis of an aerosol spheroid with no temperature jump and frictional slip at its surface, the agreement between our results and the available analytical solutions is very good. The thermophoretic velocity of a spheroid along its axis of revolution in general increases with an increase in its axial‐to‐radial aspect ratio, but there are exceptions. For most practical cases of a spheroid with a specified aspect ratio, its thermophoretic mobility is not a monotonic function of its relative jump/slip coefficients and thermal conductivity. © 2008 American Institute of Chemical Engineers AIChE J, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call