Abstract

Abstract In this article, the mass and heat transfer flow of Ag–kerosene oil nanofluid over a cone under the effects of suction/injection, magnetic field, thermophoresis, Brownian diffusion, and Ohmic-viscous dissipation was examined. On applying the suitable transformation, PDEs directing the flow of nanofluid were molded to dimensionless ODEs. The solution of the reduced boundary value problem was accomplished by applying Runge–Kutta–Fehlberg method via shooting scheme and the upshots were sketched and interpreted. The values of shear stress and coefficients of heat and mass transfer were attained for some selected values of governing factors. The obtained results showed that when the amount of surface mass flux shifts from injection to the suction domain, the heat and mass transfer rate grew uniformly. However, they have regularly condensed with the rise in the magnitude of the magnetic field and particle volume fraction. Several researches have been done using cone-shaped geometry under the influence of various factors affecting the fluid flow, yet, there exists no such investigation that incorporated the response of viscous-Ohmic dissipation, heat absorption/generation, suction/blowing, Brownian diffusion, and thermophoresis on the hydro-magnetic flow of silver-kerosene oil nanofluid over a cone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call