Abstract

Microchannels with asymmetrically ratcheted walls are here shown to behave as effective and versatile microfluidic pumps if locally heated. When the boundary walls have different temperatures, the confined liquid experiences a temperature gradient along the sawtooth edges, which can induce a thermoosmotic flow. A mesoscale molecular simulation approach is here employed to investigate the flows which are contrasted using an analytical approach. Microchannels can be composed by one or two ratcheted walls which can be straight or cylindrical. Varying the channel geometry can not only change the overall fluid flux, but also vary the flow patters from shear to capillary type, or even to extensional type flows. This scheme does not require multiphase fluids or any movable channel parts, although they are possible to be implemented. The proposed principle is then very versatile to locally manipulate complex fluids, and a promising tool to recover waste heat, to facilitate cooling of microchips, and to manufacture portable lab-on-a-chip devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.