Abstract

The requirements of matching shell ICF target parameters, parameters of compressing, and triggering drivers under direct (fast) ignition are developed. Thin shell target, which represents a shell-ablator with a DT-ice layer, frosted on the inner surface of the shell are considered. Design of a target which ensures the energy supply from the triggering driver to the central part of thermonuclear fuel, in both spherical and cylindrical geometry is developed. Spherical target is furnished with one or two conical channels for the injection of the triggering driver radiation. The ends of the cylindrical target are protected by heavy material walls that have the holes of the radius equal to the final radius of compressed fuel. It was found that the parameters of fast ignition spherical and cylindrical targets, which provide high thermonuclear gain of 500–2000 in the range of the compressing driver energy of 1–10 MJ, may be matched with the drivers parameters at low aspect ratios of the targets, 10–20. The operation of spherical targets at the moderate radius convergence ratio of 15–20, may be provided at the triggering driver energy not higher than 30 kJ. The operation of cylindrical target with spin-oriented DT-fuel at radius convergence ratio of 20–25 may be provided at 150–200 kJ of the triggering driver energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.