Abstract

Relativistic jets are observed from accreting and cataclysmic transients throughout the Universe, and have a profound impact on their surroundings1,2. Despite their importance, their launch mechanism is not known. For accreting neutron stars, the speed of their compact jets can reveal whether the jets are powered by magnetic fields anchored in the accretion flow3 or in the star itself4,5, but so far no such measurements exist. These objects can show bright explosions on their surface due to unstable thermonuclear burning of recently accreted material, called type-I X-ray bursts6, during which the mass-accretion rate increases7-9. Here, we report on bright flares in the jet emission for a few minutes after each X-ray burst, attributed to the increased accretion rate. With these flares, we measure the speed of a neutron star compact jet to be , much slower than those from black holes at similar luminosities. This discovery provides a powerful new tool in which we can determine the role that individual system properties have on the jet speed, revealing the dominant jet launching mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.