Abstract

The regimes of thermonuclear burning in selfsustained and driven tokamak reactors using deuterium-tritium plasma with nuclei polarized along the magnetic field are investigated. A comparison is made between the burning regimes in reactors with polarized and unpolarized plasma. In particular, it is shown that the temperature regions that allow stable steady-state thermonuclear reactions are similar for both types of reactors. However, as compared to the conventional case, the driven reactor with polarized nuclei requires higher power levels of neutral injection or radiofrequency heating to achieve the same stable temperature regime. The power multiplication factor, when using polarized nuclei, is unchanged or may be higher due to deterioration of alpha-particle confinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.