Abstract
The chemical composition of chlorites from the rocks that are conventionally classified as the residual weathering mantle of the Kolskii ophiolite massif was studied. The chlorites exhibit high Mg/ (Mg + Fe) atomic ratio values (Mg#) of 0.78–0.96 and elevated Si content (2.95–3.74 apfu), but are relatively poor in Al (1.28–2.66 apfu). In terms of octahedral occupancy (RVI is 5.52–5.98 and [R3+]VI is 0.87–2.04 apfu), they are classified as the trioctahedral subgroup. The NiO content in the chlorites varies from 0.2 to 21 wt %; in addition, the tabular low-Ni and high-Ni chlorite grains are often tightly intergrown. There is a pronounced negative correlation between NiO and MgO content. The crystallization temperature estimated using chlorite geothermometers varies widely. The crystallization temperature interval is 125–300°C or higher with a statistical maximum in the region of 175–300°C for the low-Ni chlorites and 50–250°С with a statistical maximum in the region of 75–125°С for the high-Ni chlorites. In addition, the high-Ni chlorites demonstrate a gradual decrease in temperature as the nickel content increases. This correlation indicates the important role of temperature as an ore generation factor during the formation of the oxide–silicate nickel deposits that are associated with the Kolskii massif. These tendencies support the conclusion that the hydrothermal processes not only preceded lateritization, but also played a significant part in the level of nickel concentration in phyllosilicates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.